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Phase transitions in a simple growth model for a driven interface in random media

Kwangho Park and In-mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 9 March 2000!

We introduce a simple growth model for a driven interface in random media, exhibiting a smoothing
~roughening! transition as well as a pinning-depinning transition in a nonequilibrium (111)-dimensional
system. At both transition points, the scaling exponents belong to the directed percolation universality class.
The rough interface at the pinning-depinning transition point belongs to the quenched Kardar-Parisi-Zhang
universality class. The two transitions are second order phase transitions. We also introduce a modified growth
model exhibiting the pinning-depinning transition. In the modified model, the pinning-depinning transition is a
first order phase transition in the directed percolation universality class.

PACS number~s!: 05.40.2a, 05.70.Ln, 68.35.Rh, 47.55.Mh
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The problem of phase transitions in nonequilibriu
(111)-dimensional systems has recently attracted much
terest @1–3#. Usually, phase transitions in nonequilibriu
(111)-dimensional systems are observed in systems w
absorbing states. These systems exhibit a phase trans
from an active to an inactive~absorbing! state. Examples are
the monomer-dimer model for the catalytic oxidation of C
@4#, the contact process@5#, branch-annihilation random
walks with odd numbers of offspring@6#, the interacting
monomer-dimer model@2#, etc. It is well known that this
phase transition is related to directed percolation~DP! @7# or
the parity conserving~PC! universality class@2,6,8–10#. DP
is the generic universality class for phase transitions fr
active to inactive states, and PC is related to the phase
sitions in a few models with two symmetric absorbing stat
The representative example for the PC universality clas
branching-annihilating random walkers with an even num
of offspring @6#.

Recently, it has been reported that DP or PC in a f
models is related to the roughening transition of a grow
interface in a nonequilibrium (111)-dimensional system
An interface under thermal equilibrium in 111 dimensions
is always rough and thus does not exhibit a roughening t
sition from a smooth phase to a rough one with diverg
width or vice versa. In higher dimensions an interface un
thermal equilibrium can undergo a roughening transition
some critical temperature. However, a surface far from eq
librium in 111 dimensions can exhibit a nonequilibriu
roughening~NR! transition, although there are few exampl
@1,11,12#. These examples are polynuclear growth mod
@12#, the fungal growth model@13#, the solid-on-solid mode
with evaporation at the edge of the terrace@1#, and the dimer
adsorption-desorption model@3#. The important feature o
the NR transition is its relation to the DP or PC class a
specific reference height of the interface. All NR transitio
in a (111)-dimensional system have been observed in
terfaces fluctuating in homogeneous media. Thus it would
interesting to find a model describing a driven interface
random media that exhibits a nonequilibrium roughen
transition.

An important feature of the motion of a driven interface
random media is the interplay between the quenched di
der and the driving force acting on the interface. The int
PRE 621063-651X/2000/62~3!/3322~5!/$15.00
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face is pinned when the driving forceF is smaller than the
pinning strength induced by the quenched disorder. Fo
largeF, however, the interface can move for a while until
is pinned again. There exists a threshold of the driving fo
Fp above which the interface moves with a finite velocit
Accordingly the velocity is zero forF,Fp and it is nonzero
for F.Fp . This phenomenon is calleda pinning-depinning
transition. WhenF.Fp , we expectv;(F2Fp)u, whereu
is the velocity exponent.

The dynamics of driven interfaces in a random mediu
has been well explained by the quenched Kardar-Pa
Zhang~QKPZ! equation@14#,

]h~x,t !

]t
5n¹2h1

l

2
~¹h!21F1h~x,h!, ~1!

whereh(x,t) is the height of the interface at positionx and
time t. F is an external driving force andh is a quenched
noise with ^h(x,h)&50 and ^h(x,h)h(x8,h8)&52Dd(x
2x8)d(h2h8). In the QKPZ equation, the pinning
depinning transition is a second order phase transition
the value of the velocity exponent is about 0.636@14#. The
fluctuating interface formed by the QKPZ equation is alwa
rough in the regimeF.Fp so that no NR transition has bee
observed yet.

In this paper we introduce a simple growth model exh
iting not only a pinning-depinning transition but also
smoothing ~roughening! transition in nonequilibrium (1
11)-dimensional systems. In our model the interface
driven in a random medium by a driving forceF. The scaling
properties of the model at both transition points are relate
the DP class. We find that the pinning-depinning transition
a second order phase transition and the scaling exponent
the thresholdFp belongs to the QKPZ universality class. I
addition to the depinning transition a smoothing transiti
occurs atFs for Fs.Fp . The interface maintains a smoot
phase forF.Fs . We find that the smoothing transition i
also a second order phase transition.

The model is defined on a (111)-dimensional lattice
with a periodic boundary condition. We consider a two d
mensional checkerboard lattice, rotated at 45° to the squ
lattice. Every site in the lattice can be occupied or vaca
We define the interface as a borderline between the occu
3322 ©2000 The American Physical Society
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and vacant sites. We preassign random numbers betwe
and 1, representing impurities in a random medium, to
perimeter sites of the initially flat interface. A constant dri
ing forceF is thus applied to the interface. Each site on t
interface has one or two nearest neighbor vacant sites in
direction of the driving force, which can become occupied
each time step. A vacant sitei is occupied when the value o
the random number at the site is smaller than the driv
forceF. At each time, the growth of the interface is made
parallel updating of all the nearest neighboring vacant s
of the interface. After the growth, we impose the restric
solid-on-solid~RSOS! condition uhi2hi 11u<1 on all sites
on the interface. Here,hi means the height at the sitei. The
RSOS condition is fulfilled by instantaneous avalanche p
cesses after parallel updating~see Fig. 1!.

Although the growth rule of our model is simple, th
model exhibits rich critical behaviors. For small values of t
driving force F, the interface is pinned temporarily afte
some movements. The interface shows the same behavio
F,Fp . The velocity of the interface, however, becomes
nite for F.Fp . We carried out the simulation for the syste
sizeL510 000. The velocity versus the driving force is plo
ted in Fig. 2. By fitting the velocity data above the thresho
to v;(F2Fp)u, we obtained the critical driving force a
Fp.0.34 andu50.62360.004 in the QKPZ universality
class@14#.

Near the depinning transition, the dynamics shows n
trivial scaling behavior in the global interface width. Th
global interface width, defined byW(L,t)5^L2d8( i@hi(t)
2h̄(t)#2&1/2, scales as

FIG. 1. Schematic representation of the stochastic growth
of the model. The two small arrows indicate the sites having sma
random numbers than the driving force. The bold lines denote
newly updated lines on the interface. Thei ’s and (i )’s denote sites
on the substrate at the height valuesj and j 11, respectively. Top:
The height configurationH(t) before growth at timet is H(t)
5$ . . . ,hi ,hi 11 ,hi 12 ,hi 13 ,hi 14 , . . . %5$ . . . ,j , j , j 11,j , j , . . . %.
Bottom: The H(t11) after growth is H(t11)
5$ . . . ,hi ,hi 11 ,hi 12 ,hi 13 ,hi 14 , . . . %5$ . . . ,j , j 11,j 12,j 11,
j , . . . %.
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W~L,t !;H tz/z if t!Lz

Lz if t@Lz.
~2!

Hereh̄, L, d8, andhi(t) denote the mean height, system siz
substrate dimension, and the height at timet and sitei, re-
spectively.z andz are called the roughness and the dynam
exponents. The roughness exponentz can also be obtained
from the height-height correlation functionC(x)5^(hi 1x
2hi)

2&1/2;xz in the long time limit. Near the depinning
thresholdFp50.34, the roughness exponent is measured
be z50.63060.001 from the height-height correlation func
tion. The growth exponentz/z from the global width is ob-
tained as 0.7260.01. The roughness exponent obtained
very close to the value for the QKPZ universality class,z
50.63360.001@14#. A notable growth model mimicking the
QKPZ equation near the thresholdFp was proposed by
Sneppen several years ago@15#. From the model, it has natu
rally been concluded that the interface at the threshold of

le
r
e

FIG. 2. Plot of average velocity versus external driving force
a system sizeL510 000@for the orginal model~a! and the modified
model ~b!#. The dotted line~bottom! in ~a! is v;(F20.34)0.623.
The dotted line ~top! in ~a! is V(512v)5121.75(0.7055
2F)1.772.
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3324 PRE 62KWANGHO PARK AND IN-MOOK KIM
depinning transition can be described by a DP clus
spanned perpendicular to the interface growth direction
111 dimensions. The roughness exponentz of the interface
is given by the ratio of the correlation length exponentsn'

and n i of the DP cluster in the transverse and longitudin
directions, that is,z5n' /n i50.63360.001. The dynamic
rule of the Sneppen model is the same as in our model a
depinning threshold. Accordingly, the dynamics of the mo
belongs to the DP universality class.

In the depinned phase (F.Fp), the interface grows with
a finite velocity, which increases as the driving forceF does
until Fs50.7055. Surprisingly, at the critical driving forc
Fs , the velocity of the driven interface saturates to 1. A
though the number of newly updated sites per each Mo
Carlo time step is smaller than the system sizeL at Fs , the
velocity of the interface can become 1 because of the a
lanche process satisfying the RSOS condition. At the sa
time, the roughness of the interface decreases as the dr
force F increases and the value of the roughness expo
becomes 0 atFs , indicating a smooth phase. This noneq
librium smoothing~roughening! transition atFs is also re-
lated to the DP class. It has been reported that, in mo
exhibiting a NR transition in 111 dimensions, the DP pro
cess emerges at a particular reference height of the inter
@13#. In those models, the reference height is the bott
layer of the interface. The sites where the interface touc
the reference height correspond to the active sites of
Therefore, in the active phase of DP the interface fluctua
close to the reference level so that the interface is smo
On the other hand, in the inactive phase of DP, the interf
detaches from the reference level and evolves into a ro
state. In our model, the sites whose height is the same a
Monte Carlo time correspond to the active sites of DP. T
level of the reference height in our model is the Monte Ca
time at each time step and so always varies as time elap

We examined the scaling behavior of the interface wi
at the critical driving forceFs . The width atFs grows as
Wc;(ln t)g1 before saturation. After saturation, the width
Wc;(ln L)g2. Hereg1 andg2 are obtained asg1.0.33 and
g2.0.48. In the polynuclear growth model introduced
Kertész and Wolf@12#, which shows a NR transition in 1
11 dimensions, the values ofg areg15g2.0.5. However,
in the restricted and unrestricted models by Alonet al. @1#,
the values ofg areg15g2.0.43 andg15g2.0.25, respec-
tively. These facts indicate that the width atFs shows non-
universal behavior. The fact thatWc;(ln L)g2 indicates that
the morphology of the moving interface forF.Fs is
smooth. Usually, in a model exhibiting the NR transition
111 dimensions, the smooth phase corresponds to the a
DP phase, whereas the rough phase corresponds to the
active DP phase. In our model the occupied sites on
interface, whose height value is the Monte Carlo time, can
considered as the active sites of a DP process. We meas
the density of occupied sites,r(F,t), at the reference heigh
r(F,t) is saturated at a finite value forF.Fs and decrease
to zero exponentially forF,Fs in the long time limit. The
result is shown in Fig. 3. AtFs , r(Fs ,t) scales as

r~Fs ,t !;t2b/n i. ~3!

From the Monte Carlo simulation for different system siz
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L564–1024, we measuredb/n i50.159660.002, which is
in excellent agreement with the DP value 0.1595@16#. We
also considered the densityrs(Fs ,t), which is averaged ove
samples with at least one occupied site at the refere
height. The density decays as Eq.~3! before the saturation
time t(t,t) and has a finite value fort.t. The steady state
value of rs(Fs) depends on system sizeL as rs(Fs)
;L2b/n'. We obtainedb/n'50.25360.002, which is al-
most the same as the expected value from the DP class~see
Fig. 4!, 0.252@16#.

FIG. 3. Plot ofr(F,t) versust in double logarithmic scale for
the driving forceF50.707 ~top!, 0.7055(5Fs), and 0.702~bot-
tom!. The data were obtained for a system size 1024. The
obtained from the least squares fit has the slopeb/n i50.1596. In-
set: Plot ofr(Fs ,t) versust in double logarithmic scale for the
system sizesL564, 128, 256, 512, and 1024 at the critical drivin
force Fs .

FIG. 4. Plot ofrs(Fs ,t) versust in double logarithmic scale for
the system sizesL564, 128, 256, 512, and 1024. The slope of t
dotted line isb/n i50.1596. Inset: Plot ofrs(Fs) versusL in double
logarithmic scale for the system sizesL564, 128, 256,512, and
1024. The line obtained from the least squares fit has the s
b/n'50.253.
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Next, we define a convenient order parameter for
smoothing transition asV512v, wherev denotes the mean
velocity of the interface. The order parameterV is zero in the
smooth phase and is not zero in the rough phase~see Fig. 2!.
The order parameter is characterized by the inverse of
characteristic timeT, V;1/T, where T is regarded as the
characteristic time that the DP correlations survive. T
characteristic timeT is in proportion to the correlation lengt
j i of the DP cluster in the longitudinal direction. Hence,V
;1/T;en i;j

'

2n i /n' , where e5Fs2F!1 and j' denotes
the correlation length of the DP cluster in the transverse
rection. The order parameterV is shown in Fig. 5. By fitting
the velocity data below the thresholdFs to V;en i, we ob-
tained n i51.77260.006, in good agreement with the D
universality class, 1.736@16#. The order parameterV decays
asV;1/ta(a51) for time t,T and has a finite value fort
.T. The steady state value ofV at Fs depends on system
size L as V(Fs);L2n i /n'. At Fs we measured V
;t21.0060.04 for t,T andV;L21.59260.007 for t.T, in good
agreement with the DP theory~see Fig. 5!, 1.582@16#.

Recently Alonet al. @1#. showed, through the study of
stochastic growth model exhibiting the NR transition, th
spontaneous symmetry breaking~SSB! may take place in
nonequilibrium situations under certain conditions in 111
dimensions. It would be interesting to consider whether
model shows the same SSB as that found by Alonet al.They
defined a magnetizationlike order parameter to quantify S
in their model, as follows:

M5
1

L (
i 51

L

~21!hi. ~4!

They found^M &Þ0 in the smooth phase and^M &50 in the
rough phase. In their model, the interface in the smo
phase becomes pinned at a specific height in the long
limit and the velocity becomes zero in the thermodynam
limit. Only in a finite system will the interface have a finit

FIG. 5. Plot ofV versust in double logarithmic scale for the
system size 1024. The slope of the dotted line isa51.0. Inset: Plot
of V(Fs) versusL in double logarithmic scale for the system si
L532, 64, 128, 256, and 512. The line obtained from the le
squares fit has the slopen i /n'51.592.
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velocity that vanishes exponentially with the system si
This breaks the symmetry between odd and even height
the thermodynamic limit. The final interface will be pinne
at an odd or even height, depending on the initial conditio
breaking the symmetry of the dynamics. On the other ha
in our model the velocity of the interface is always finite
the smooth phase, not allowing SSB. Therefore, there is
SSB in our model like that found by Alonet al. @1#.

We then considered a modified model that has the sa
growth rule as that of the original model, but without th
avalanche process satisfying the RSOS condition. T
growth in the modified model occurs only at the sites who
height is the same as the reference height, i.e., the Mo
Carlo time. We found that the greatest height of the interfa
is lower than the reference height forF,Fs , but there exists
at least one site whose height is the same as the refer
height atFs . Therefore, one can deduce that the critical d
pinning force is alsoFs50.7055 in the modified model
WhenF,Fs , the interface in our modified model is pinne
and the velocity is thus 0. An interesting feature is that
velocity of the interface jumps from 0 to 1 atF5Fs . In the
modified model, there is no avalanche process which ma
the velocity of the growing interface 1 atFs , but the height
increment of the interface at newly updated sites can be
ger than one lattice unit. In the original model, the heig
increment at the newly updated site is always one lattice u
This large height increment plays the same role as the a
lanche process in the original model, and so the velocity
the growing interface in the modified model becomes 1
Fs . The pinning-depinning transition in the modified mod
is, therefore, afirst order phase transition. The velocity ver

FIG. 6. Snapshots of the interfaces formed from the modifi
model ~a! and the orginal model~b! for the driving force 0.7055
(5Fs). The data are obtained for a system size 512. The grow
interface is rough in the modified model atFs , but smooth in the
original model.
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3326 PRE 62KWANGHO PARK AND IN-MOOK KIM
sus the driving force is plotted in Fig. 2~b!. r(Fs ,t) and
rs(Fs) in the modified model show the same DP behavior
that of the original model. It is a very interesting fact tha
first order phase transition is caused by DP behavior.

Unlike the modified model, it is possible in the origin
model for growth to occur at sites on the interface that h
lower heights than the reference one. The reason is bec
avalanche processes satisfying the RSOS condition ch
the distribution of random numbers of already pinned site
the interface. The avalanche process makes an interface
lower height than the reference height continue growing. T
growth induced by the avalanche process thus decrease
velocity of the growing interface gradually from 1 as th
driving force decreases fromF5Fs . At F5Fp the interface
is pinned. Avalanche processes, therefore, prevent the ve
ity of the interface from dropping suddenly to zero atFs ,
and make the velocity decrease continuously to zero. T
fact makes both the smoothing and pinning-depinning tr
sitions become second order phase transitions in the orig
model.

At Fs , both the original and modified models show t
same DP behavior forr(Fs ,t) and rs(Fs), but the mor-
phologies of interfaces formed from the two models are qu
different from each other. The morphology of the interface
the original model is smooth, but the morphology in t
s.
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modified model is quite rough atFs . A snapshot of both
interfaces is compared in Fig. 6.

In conclusion, we have introduced a simple growth mo
for a driven interface in random media, exhibiting a smoo
ing ~roughening! transition as well as a pinning-depinnin
transition in a nonequilibrium (111)-dimensional system
The model shows the pinning-depinning transition atFp
50.34. The transition is a second order phase transition.
found that the dynamics of the moving interface near
depinning threshold belongs to the quenched Kardar-Pa
Zhang universality class. Our model then shows a smooth
~roughening! transition atFs50.7055. The roughness expo
nent of the moving interface formed by the model is 0 atFs .
We found that, at the transition point, the scaling expone
characterizing the smoothing transition belong to the direc
percolation universality class. We also introduced a modifi
model without the RSOS condition in the process of int
face growth. We found that the modified model shows
pinning-depinning transition atFs rather thanFp . The
pinning-depinning transition is a first order phase transiti
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