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Phase transitions in a simple growth model for a driven interface in random media
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We introduce a simple growth model for a driven interface in random media, exhibiting a smoothing
(roughening transition as well as a pinning-depinning transition in a nonequilibrium- )-dimensional
system. At both transition points, the scaling exponents belong to the directed percolation universality class.
The rough interface at the pinning-depinning transition point belongs to the quenched Kardar-Parisi-Zhang
universality class. The two transitions are second order phase transitions. We also introduce a modified growth
model exhibiting the pinning-depinning transition. In the modified model, the pinning-depinning transition is a
first order phase transition in the directed percolation universality class.

PACS numbes): 05.40—a, 05.70.Ln, 68.35.Rh, 47.55.Mh

The problem of phase transitions in nonequilibrium face is pinned when the driving forde is smaller than the
(1+1)-dimensional systems has recently attracted much inpinning strength induced by the quenched disorder. For a
terest[1-3]. Usually, phase transitions in nonequilibrium largeF, however, the interface can move for a while until it
(1+1)-dimensional systems are observed in systems witl§ pinned again. There exists a threshold of the driving force
absorbing states. These systems exhibit a phase transitiérp above which the interface moves with a finite velocity.
from an active to an inactiveabsorbing state. Examples are Accordingly the velocity is zero foF <F and it is nonzero
the monomer-dimer model for the catalytic oxidation of COfor F>F . This phenomenon is calleal pinning-depinning
[4], the contact proces§5], branch-annihilation random transition WhenF>F,, we expect ~(F—F,)’, where¢
walks with odd numbers of offspring6], the interacting is the velocity exponent.
monomer-dimer mode]2], etc. It is well known that this The dynamics of driven interfaces in a random medium
phase transition is related to directed percolatibR) [7] or  has been well explained by the quenched Kardar-Parisi-
the parity conservingPC) universality clas$2,6,8—10. DP  Zhang(QKPZ) equation[14],
is the generic universality class for phase transitions from
active to inactive states, and PC is related to the phase tran- h(x,t)
sitions in a few models with two symmetric absorbing states. ot
The representative example for the PC universality class is
branching-annihilating random walkers with an even numbewhereh(x,t) is the height of the interface at positionand
of offspring [6]. time t. F is an external driving force ang is a quenched

Recently, it has been reported that DP or PC in a fewnoise with (7(x,h))=0 and (#n(x,h)n(x’,h"))=2D &(x
models is related to the roughening transition of a growing—x")8(h—h’"). In the QKPZ equation, the pinning-
interface in a nonequilibrium (&1)-dimensional system. depinning transition is a second order phase transition and
An interface under thermal equilibrium in+11 dimensions the value of the velocity exponent is about 0.63@]. The
is always rough and thus does not exhibit a roughening trarfluctuating interface formed by the QKPZ equation is always
sition from a smooth phase to a rough one with divergingrough in the regimé&>F, so that no NR transition has been
width or vice versa. In higher dimensions an interface undepbserved yet.
thermal equilibrium can undergo a roughening transition at In this paper we introduce a simple growth model exhib-
some critical temperature. However, a surface far from equiiting not only a pinning-depinning transition but also a
librium in 1+1 dimensions can exhibit a nonequilibrium smoothing (roughening transition in nonequilibrium (1
rougheningNR) transition, although there are few examples + 1)-dimensional systems. In our model the interface is
[1,11,17. These examples are polynuclear growth modelglriven in a random medium by a driving forée The scaling
[12], the fungal growth moddl13], the solid-on-solid model properties of the model at both transition points are related to
with evaporation at the edge of the terr@tg and the dimer the DP class. We find that the pinning-depinning transition is
adsorption-desorption mod¢8]. The important feature of a second order phase transition and the scaling exponent near
the NR transition is its relation to the DP or PC class at ahe threshold, belongs to the QKPZ universality class. In
specific reference height of the interface. All NR transitionsaddition to the depinning transition a smoothing transition
in a (1+1)-dimensional system have been observed in inoccurs atFg for F>F,. The interface maintains a smooth
terfaces fluctuating in homogeneous media. Thus it would bghase forF>F,. We find that the smoothing transition is
interesting to find a model describing a driven interface inalso a second order phase transition.
random media that exhibits a nonequilibrium roughening The model is defined on a (11)-dimensional lattice
transition. with a periodic boundary condition. We consider a two di-

An important feature of the motion of a driven interface in mensional checkerboard lattice, rotated at 45° to the square
random media is the interplay between the quenched disofattice. Every site in the lattice can be occupied or vacant.
der and the driving force acting on the interface. The inter\We define the interface as a borderline between the occupied

N
=vV2h+ E(Vh)2+F+ n(x,h), 1)
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FIG. 1. Schematic representation of the stochastic growth rule i MR

of the model. The two small arrows indicate the sites having smaller 08
random numbers than the driving force. The bold lines denote the '
newly updated lines on the interface. Tihg and ()’s denote sites

on the substrate at the height valjeendj + 1, respectively. Top: N

The height configuratiorH(t) before growth at timet is H(t) 04 }
={..ohihhia g i, =1L )
Bottom: The H(t+1) after growth is H(t+1) -
={..hihichio b hig, 3= H2) 41
J,} 0 F ¢ 00 0660066600690

and vacant sites. We preassign random numbers between 0 ' ' . .
and 1, representing impurities in a random medium, to all
perimeter sites of the initially flat interface. A constant driv- 0 02 04 0.6 08 1
ing forceF is thus applied to the interface. Each site on the
interface has one or two nearest neighbor vacant sites in the F
direction of the driving force, which can become occupied at
each time step. A vacant sités occupied when the value of FIG. 2. Plot of average velocity versus external driving force for
the random number at the site is smaller than the driving: system sizé& =10 000[for the orginal mode(a) and the modified
force F. At each time, the growth of the interface is made bymodel (b)]. The dotted line(bottom in (a) is v~ (F—0.34)6%
parallel updating of all the nearest neighboring vacant site§he dotted line (top) in (& is V(=1-v)=1-1.75(0.7055
of the interface. After the growth, we impose the restricted— F)772
solid-on-solid (RSOS condition |h;—h;,;|<1 on all sites
on the interface. Herd); means the height at the siteThe t7 if  t<L?
RSOS condition is fulfilled by instantaneous avalanche pro- WL~ LY if t>LZ 2)
cesses after parallel updatitgge Fig. 1

Although the growth rule of our model is simple, the pereh | d’, andh;(t) denote the mean height, system size,
mpdel exhibits rich CI‘!IICBJ beha_wor_s. For small valqes of thegypstrate dimension, and the height at titrend sitei, re-
driving force F, the interface is pinned temporarily after ghectively.s andz are called the roughness and the dynamic

some movements. The interface shows the same behavior f@kponents. The roughness exponéntan also be obtained

F<F,. The velocity of the interface, however, becomes ﬁ'from the height-height correlation functioB(x)={(h;

nite for F>F,. We carried out the simulation for the system —h;)2)Y2~x¢in the long time limit. Near the depinning
sizeL =10 000. The velocity versus the driving force is plot- 1 -asholdF =0.34, the roughness exponent is measured to
ted in Fig. 2. Bey fitting the velocity data above the thres’ho'dbe§=0.63(’))t 0.001 from the height-height correlation func-
to v~(F—F)", we obtained the critical driving force as {5y The growth exponent/z from the global width is ob-
Fp=0.34 and §=0.623-0.004 in the QKPZ universality (5ineq as 0.720.01. The roughness exponent obtained is
class[14]. o » _ very close to the value for the QKPZ universality clags,
Near the depinning transition, the dynamics shows non- g g33+ 9 001[14]. A notable growth model mimicking the
trivial scaling behavior in the global interface,width. The QKPZ equation near the thresholél, was proposed by
global interface width, defined bW(L,t)=(L"" =i[hi(t)  Sneppen several years add]. From the model, it has natu-
— h(t)]2>1/2, scales as rally been concluded that the interface at the threshold of the
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depinning transition can be described by a DP cluster 0 . . . . .
spanned perpendicular to the interface growth direction in
1+1 dimensions. The roughness exponé&if the interface
is given by the ratio of the correlation length exponents
and v of the DP cluster in the transverse and longitudinal
directions, that is,{=», /7j=0.633-0.001. The dynamic
rule of the Sneppen model is the same as in our model at the
depinning threshold. Accordingly, the dynamics of the model
belongs to the DP universality class.
In the depinned phasdé-(F ), the interface grows with
a finite velocity, which increases as the driving fofeeloes
until F=0.7055. Surprisingly, at the critical driving force
F., the velocity of the driven interface saturates to 1. Al- 3
though the number of newly updated sites per each Monte
Carlo time step is smaller than the system dizat F, the 0 I 2 3 4 5
velocity of the interface can become 1 because of the ava-
lanche process satisfying the RSOS condition. At the same Int
time, the roughness of the interface decreases as the driving
force F increases and the value of the roughness exponent FIG. 3. Plot ofp(F,t) versust in double logarithmic scale for
becomes 0 aF, indicating a smooth phase. This nonequi-the driving forceF=0.707 (top), 0.7055¢F), and 0.702(bot-
librium smoothing(roughening transition atF, is also re- tom)._ The data were obtained fqr a system size 1024. The line
lated to the DP class. It has been reported that, in modePtained from the least squares fit has the slgpe=0.1596. In-
exhibiting a NR transition in *1 dimensions, the DP pro- set: Plot_ofp(Fs,t) versust in double logarithmic scgl_e for _th_e
cess emerges at a particular reference height of the interf:ﬁéﬁswm sizes. =64, 128, 256, 512, and 1024 at the critical driving
[13]. In those models, the reference height is the bottoro¢e Fs-
layer of the interface. The sites where the interface touches
the reference height correspond to the active sites of DR.=64-1024, we measurefl/vj=0.1596* 0.002, which is
Therefore, in the active phase of DP the interface fluctuatefh excellent agreement with the DP value 0.1996]. We
close to the reference level so that the interface is smoothalso considered the density(Fs,t), which is averaged over
On the other hand, in the inactive phase of DP, the interfaceamples with at least one occupied site at the reference
detaches from the reference level and evolves into a rougheight. The density decays as H@) before the saturation
state. In our model, the sites whose height is the same as thiene 7(t<7) and has a finite value far> 7. The steady state
Monte Carlo time correspond to the active sites of DP. Thevalue of pi(F.) depends on system size as pg(F)
level of the reference height in our model is the Monte Carlo~|_~#/"., We obtainedB/v, =0.253+0.002, which is al-
time at each time step and so always varies as time elapsafost the same as the expected value from the DP ¢$ass
We examined the scaling behavior of the interface widthrig. 4), 0.252[16].
at the critical driving forceF;. The width atF¢ grows as
W~ (Int)" before saturation. After saturation, the width is
W,.~(InL)”2. Herey, and vy, are obtained ay;=0.33 and .
v,=0.48. In the polynuclear growth model introduced by Sty
Kertesz and Wolf[12], which shows a NR transition in 1
+1 dimensions, the values of are y;= y,=0.5. However,
in the restricted and unrestricted models by Akral. [1],
the values ofy are y;= y,=0.43 andy,; = y,=0.25, respec-
tively. These facts indicate that the width &f shows non-
universal behavior. The fact th&l¢.~ (InL)”2 indicates that
the morphology of the moving interface fodF>Fg is
smooth. Usually, in a model exhibiting the NR transition in ) 3
1+ 1 dimensions, the smooth phase corresponds to the active InL
DP phase, whereas the rough phase corresponds to the non-
active DP phase. In our model the occupied sites on the
interface, whose height value is the Monte Carlo time, can be
considered as the active sites of a DP process. We measured 0 I 2 3 4 5 0
the density of occupied siteg(F,t), at the reference height.
p(F,t) is saturated at a finite value f&>F4 and decreases Int
to zero exponentially foF <F in the long time limit. The FIG. 4. Plot ofp4(Fs,t) versust in double logarithmic scale for
result is shown in Fig. 3. AFg, p(Fs,t) scales as the system sizek =64, 128, 256, 512, and 1024. The slope of the
B dotted line isB/v=0.1596. Inset: Plot 0bs(F) versusL in double
p(Fg,t)~t= A, (3)  logarithmic scale for the system sizés=64, 128, 256,512, and
1024. The line obtained from the least squares fit has the slope
From the Monte Carlo simulation for different system sizesg/v, =0.253.
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FIG. 6. Snapshots of the interfaces formed from the modified

Next, we define a convenient order parameter for the
smoothing transition a§=1—uv, wherev denotes the mean
velocity of the interface. The order parametgis zero in the  model (a) and the orginal modefb) for the driving force 0.7055
smooth phase and is not zero in the rough pliase Fig. 2 (=F,). The data are obtained for a system size 512. The growing
The order parameter is characterized by the inverse of thigterface is rough in the modified model &g, but smooth in the
characteristic timeT, V~1/T, where T is regarded as the o©riginal model.
characteristic time that the DP correlations survive. Th

. Qelocity that vanishes exponentially with the system size.
characteristic timd is in proportion to the correlation length y P y y

. N S This breaks the symmetry between odd and even heights in
) of the DP glyui'fer in the longitudinal direction. Hende, the thermodynam?/c limit. ¥I'he final interface will be pinned
~UT~e"l~§ """, wheree=F;—F<1 and, denotes gt an odd or even height, depending on the initial conditions,
the correlation length of the DP cluster in the transverse dipreaking the symmetry of the dynamics. On the other hand,
rection. The order parametefris shown in Fig. 5. By fitting  in our model the velocity of the interface is always finite in
the velocity data below the threshold to V~€”l, we ob-  the smooth phase, not allowing SSB. Therefore, there is no
tained »|=1.772£0.006, in good agreement with the DP SSB in our model like that found by Aloet al. [1].
universality class, 1.73fL6]. The order parametér decays We then considered a modified model that has the same
asV~1t*(a=1) for time t<T and has a finite value fdr  growth rule as that of the original model, but without the
>T. The steady state value &f at Fs depends on system avalanche process satisfying the RSOS condition. The
size L as V(Fg~L "', At F; we measuredV  growth in the modified model occurs only at the sites whose
~t7 1005004 for t<T andV~L 1592007 for t>T, in good  height is the same as the reference height, i.e., the Monte
agreement with the DP theorgee Fig. 5, 1.582[16]. Carlo time. We found that the greatest height of the interface
Recently Alonet al. [1]. showed, through the study of a is lower than the reference height e, F, but there exists
stochastic growth model exhibiting the NR transition, thatat least one site whose height is the same as the reference
spontaneous symmetry breakit§SB may take place in height atF. Therefore, one can deduce that the critical de-
nonequilibrium situations under certain conditions ifr1  pinning force is alsoF =0.7055 in the modified model.
dimensions. It would be interesting to consider whether ouwhenF <F., the interface in our modified model is pinned
model shows the same SSB as that found by Adbal. They  and the velocity is thus 0. An interesting feature is that the
defined a magnetizationlike order parameter to quantify SSRelocity of the interface jumps from 0 to 1 Rt=F. In the
in their model, as follows: modified model, there is no avalanche process which makes
the velocity of the growing interface 1 &t, but the height
increment of the interface at newly updated sites can be big-
ger than one lattice unit. In the original model, the height
increment at the newly updated site is always one lattice unit.
They found(M)# 0 in the smooth phase af)=0 in the  This large height increment plays the same role as the ava-
rough phase. In their model, the interface in the smootHanche process in the original model, and so the velocity of
phase becomes pinned at a specific height in the long timthe growing interface in the modified model becomes 1 at
limit and the velocity becomes zero in the thermodynamicF,. The pinning-depinning transition in the modified model
limit. Only in a finite system will the interface have a finite is, therefore, dirst order phase transition. The velocity ver-

|~

L
M= i§l<—1>*‘i. (4)
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sus the driving force is plotted in Fig.(1l®. p(Fs,t) and  modified model is quite rough d&. A snapshot of both
ps(Fg) in the modified model show the same DP behavior asnterfaces is compared in Fig. 6.
that of the original model. It is a very interesting fact that a  In conclusion, we have introduced a simple growth model
first order phase transition is caused by DP behavior. for a driven interface in random media, exhibiting a smooth-
Unlike the modified model, it is possible in the original ing (roughening transition as well as a pinning-depinning
model for growth to occur at sites on the interface that haveransition in a nonequilibrium (& 1)-dimensional system.
lower heights than the reference one. The reason is becau$fe model shows the pinning-depinning transition Fat
avalanche processes satisfying the RSOS condition changeg 34. The transition is a second order phase transition. We
the distribution of random numbers of already pinned sites ifg,nd that the dynamics of the moving interface near the
the interface. The avalanche process makes an interface Witfypinning threshold belongs to the quenched Kardar-Parisi-
lower height than the reference height continue growing. Th&pang universality class. Our model then shows a smoothing
growth induced by the avalanche process thus decreases th%ughening transition atF = 0.7055. The roughness expo-
velocity of the growing interface gradually from 1 as the pent of the moving interface formed by the model is Gat
driving force decreases frof=F;. At F=F the interface \ye found that, at the transition point, the scaling exponents
is pinned. Avalanche processes, therefore, prevent the velogyaracterizing the smoothing transition belong to the directed
ity of the interface from dropping suddenly to zeroR&f,  nercolation universality class. We also introduced a modified
and make the velocity decrease continuously to zero. Thigyodel without the RSOS condition in the process of inter-

fact makes both the smoothing and pinning-depinning tranface growth. We found that the modified model shows the
sitions become second order phase transitions in the origingiyning-depinning  transition aF, rather thanF,. The

model. . . pinning-depinning transition is a first order phase transition.
At Fg, both the original and modified models show the
same DP behavior fop(Fs,t) and ps(F¢), but the mor- This work was supported in part by the Korean Science

phologies of interfaces formed from the two models are quiteand Engineering FoundatiofGrant No. 98-0702-05-01)3
different from each other. The morphology of the interface inand also in part by the Ministry of Education through the
the original model is smooth, but the morphology in theBK21 Project.
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